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1 Introduction

Security —As computational technologies evolve, individuals increasingly ben-
efit from the conveniences of information exchange, rapid online transactions,
and simplified electronic payments. However, these processes involve the han-
dling of critical data, such as bank accounts, passwords, private documents,
and personal information, underscoring the importance of cybersecurity. Pro-
tection of this key information can be achieved through various methods, in-
cluding human intervention and technological implementation. In addressing
the enhancement of security, both software and hardware components are piv-
otal. This paper will introduce aspects of security starting from the processor,
or central processing unit (CPU), which is the core computational unit in the
server, responsible for executing instructions and processing data. Secure pro-
cessor architectures are primarily designed as extensions of commodity proces-
sors based on architectures like x86 or RISC[1]. Governments and companies
have an increased need to explore effective security processor architectures due
to two factors.

1. Increased Software Complexity: Modern operating systems and soft-
wares, comprising millions of lines of code, present substantial security
challenges. Their complexity not only increases the risk of vulnerabil-
ities but also undermines the reliability of systems in safeguarding ap-
plications. In closed-source software, numerous zero-day vulnerabilities
remain unknown until exploited. Conversely, in open-source frameworks,
vulnerabilities might be intentionally introduced by anonymous entities,
emphasizing the necessity of hardware-level security.

2. Growth of Embedded and IoT Devices: The proliferation of embed-
ded and IoT devices, ranging from autonomous vehicles to smart wearable
technology, marks a boosting trend. These devices, store personal infor-
mation and connect to the Internet, raising concerns about data breaches
and device vulnerabilities. Hacked devices can lead to consequences rang-
ing from fraud to physical harm, necessitating the need of secure processor
architectures to mitigate these risks[2].
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2 Threats of Attacks

Attacks — The processor, in conjunction with the hardware and software in
a computer system, is exposed to various security vulnerabilities that can be
exploited by attackers. Attack methods are classified according to the attack
pattern, which includes the location of the attack (local or remote) and the
medium used (hardware or software)[1]. Several prevalent attack methodologies
will be introduced:

1. Physical Attacks

• Shack Hacks: Attackers utilize rudimentary tools to gain physi-
cal access to the processor through interfaces such as JTAG debug,
boundary scan I/O, or built-in self-test facilities. They monitor and
actively intervene with the processor by manipulating pins, altering
bus lines, and employing other methods[3].

• Lab Attacks: Attackers use high-precision laboratory equipment,
such as electron microscopes, for detailed reverse engineering, such
as monitoring analog signals to analyze cryptographic keys. These
attacks are more costly than shack attacks.

2. Hack Attacks

• General: Attackers employ software tools, such as viruses and mal-
ware, to infiltrate devices through physical or wireless connections.
These attacks include side-channel attacks that exploit vulnerabili-
ties by monitoring and probing cache memory to detect and extract
data.

• Spectre and Meltdown Exploits: These vulnerabilities illustrate
the implementation of side-channel attacks. Spectre and Meltdown
fundamentally manipulate design flaws and prediction features in
modern processors to bypass system protections. Attackers exploit
these vulnerabilities to conduct side-channel attacks, aiming to ex-
tract sensitive cache data, thereby compromising the confidentiality
and integrity of computer systems[4].

3 Root of Trust

3.1 Foundational Concepts: TCB and TEE

The Trusted Computing Base (TCB) is composed of both hardware and software
components that collaborate to uphold security guarantees as outlined by the
system architecture. The TCB encompasses all components that are essential
to maintaining security and supports the containment of security breaches.

The Trusted Execution Environment (TEE) includes all components within
the TCB, designed to provide a secure execution environment for sensitive tasks.
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The TEE ensures the protection and processing of sensitive data within a secure
area of a processor, isolated from the regular operating system.

3.2 Introduction

In computer systems, security is implemented through multiple layers, each
dependent on the reliability of the preceding layers[5]. The Root of Trust (RoT)
forms the foundational core of this hierarchy, establishing the initial security
anchor from which all subsequent security measures are derived.

The RoT comprises cryptographic keys crucial for securing the initial boot
and system verification processes. This is one of two pillars of trust in secure
processor architecture; the other being the reliability of the hardware’s manufac-
turer and components, which is beyond the scope of this discussion[1]. Adhering
to the principle that systems must boot securely or not at all, the implemen-
tation of RoT is vital, particularly in Systems on a Chip (SoC) and embedded
devices[6]. By initiating a secure boot and anchoring the security strategy of
the entire system, the RoT ensures that all operations within the TCB and TEE
are performed in a secure environment, making it an indispensable element in
the architecture of secure processors.

Figure 1: A diagram of the Root of Trust implementation of a simplified Trusted
Execution Environment with four processors. Secure processors for the sensi-
tive task obtain secret keys, ’ket p’, and ’key q’, which are stored within the
processor boundary. The secret keys are not allowed to leave the boundary and
can only be accessible to Trusted Computing Base components. Other keys are
derived from the RoT secret keys.

3.3 Principles

The cryptographic keys representing the RoT must follow three fundamental
principles: authentication, confidentiality, and integrity[1]. Authentication ne-
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cessitates that each processor has a unique secret key, which pairs with a public
key to facilitate authentication. Confidentiality is achieved through specialized
encryption keys that safeguard data as it exits the processor. Integrity is main-
tained by ensuring that the processor’s root key cannot be deduced from any
derived keys, due to the one-way nature of the encryption employed. As Figure
1 illustrates, keys going out of the processor boundary are derived from the root
keys and encrypted.

4 Implementation of TEE

TEE — A Trusted Execution Environment (TEE) is a tamper-resistant pro-
cessing environment operating on a separation kernel that protects its runtime
states and stored assets[7]. The TEE prioritizes various security goals, protect-
ing Trusted Software Modules (TSMs), virtual machines (VMs), and containers.
It ensures the authenticity of the execution code and the confidentiality and in-
tegrity of runtime states stored in persistent memory. Several exemplary TEE
architectures will be introduced:

1. eXecute-Only Memory: eXecute-Only Memory (XOM) aims to segre-
gate program execution into mutually exclusive memory ’compartments’.
As Figure 2 illustrates, the functional API of each compartment is helpful
for components segregation. The system prohibits programs from access-
ing data in compartments other than their own. Each compartment is
associated with a unique session key for the encryption and decryption of
instruction and data streams. Only one compartment can be active at any
time and its key will be loaded into the hardware and utilized to provide
cryptographic protection[1].

2. Intel’s Secure Guard Extensions: Intel’s Secure Guard Extensions
(SGX) aims to protect trusted software modules (enclaves). It creates a
clear division between trusted and untrusted code segments, ensuring sen-
sitive operations are securely executed within the enclaves. SGX can filter
unauthorized access by creating encrypted containers, even from privi-
leged software, to shield enclaves from untrusted operating systems and
external entities[8].

3. ARM TrustZone: ARM TrustZone aims to create two separate ’worlds’
for executing a trusted and secure operating system to run in parallel with
an untrusted and normal operating system[1]. It ensures that the secure
world is safe even if the normal operating system or its applications are
attacked. Trust Zone incorporates tag memory and system buses with
identifiers to show the current execution world and allow the secure world
to obtain the resource exclusively.
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Figure 2: A diagram of the eXecute-Only Memory implementation workflow.
The end-user application needs to utilize the function API to operate each
compartment.

5 Evolution of Arm TrustZone

TrustZone — In the development path of ARM TrustZone, optimization of
this security technology has been enhanced in the ARM architecture series from
ARMv6 to ARMv8. Initially introduced in 2007 with ARMv6, TrustZone cre-
ated a dual-world security structure—consisting of a secure and a non-secure
world. When the processor operates in the secure world, it accesses both secure
and non-secure world resources. However, in non-secure mode, it is restricted
from accessing secure resources.

In ARMv7-A, TrustZone was updated to include a secure monitor mode,
which manages the transition between the two worlds via a Secure Monitor Call
(SMC) and preserves the processor state during switches[9]. As Figure 3 illus-
trates, the secure monitor is the base layer of the architecture that is shared with
both worlds. It also introduced the ’Hypervisor’ as a part of ARM’s virtualiza-
tion extensions to operate in the non-secure world at a higher privilege level and
activate Stage-2 page tables to manage and translate the memory—first from
Virtual Address (VA) to Intermediate Physical Address (IPA), and then from
IPA to Physical Address (PA)[9]. This setup allowed the hypervisor to monitor
and control OS memory access attributes finely.

In ARMv8-M, TrustZone was optimized to reach faster context switching
and low-power applications[9]. Unlike ARMv7-A, It eliminates the need for a
secure monitor mode to reduce world-switching latency by memory mapping and
implementing transitions automatically by programs. As Figure 4 illustrates,
the transition between both worlds can be initiated directly instead of asking
for a secure monitor.
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Figure 3: A diagram of Arm TrustZone in ARMv7-A

Figure 4: A diagram of Arm TrustZone in ARMv8-M
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6 Applications of TrustZone

Applications — ARM TrustZone has become a popular security processor
architecture in recent years, with applications spanning various fields to enhance
security. Two exemplary applications will be introduced:

1. Online Payment: E-commerce, happening everywhere in the world, is
inherently more vulnerable to security threats such as scams and trans-
action failures than traditional trades. Particularly for online payments,
where security and stability are greatly needed. A research by Prof. Kam-
ble, P.A., and Miss. ‘Neha Patil has shown a model to secure online pay-
ments baked on ARM TrustZone[10]. They utilize TrustZone to provide
a secure execution environment for processing transactions.

As Figure 5 illustrates, a designed online payment stream system, ’Dark-
room,’ initiates from the customer application, which sends encrypted
image data to a cloud server. The server protects this data throughout its
lifecycle within the secure confines of a TrustZone-enabled processor. The
data undergoes secure modifications requested by the user and is then
transferred back to the normal operating environment after processing.
This implementation of TrustZone shows potential for mitigating common
e-commerce security risks and providing a secure payment environment.

Figure 5: A diagram of execution stream for the ’Darkroom’ system[10]

2. Vehicle Engine Control Units: Embedded systems, particularly in
the automotive aspect, with a strong need for security due to the nature
of slow iteration and isolation of the platform, are dependent on secure
processor architecture such as Arm Trustzone. In a survey published by
ProvenRun, Vehicle Engine Control Units (ECUs), which are crucial for
managing various vehicle functions, the implementation of TrustZone to
secure ECUs by isolating critical computing tasks in a secure environ-
ment is highlighted[11]. This isolation helps prevent unauthorized access
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to vehicle operations and secure sensitive tasks such as signal process-
ing. Categorized by the tasks performed by vehicle ECUs, including the
Electric Vehicle Charger Controller (EVCC), central gateways, and others,
these units are segregated within a TEE and communicate with each other
following the TrustZone model. This structure ensures secure interactions
across different ECUs and the overall security framework of the vehicle.

7 Conclusion

In this survey, a comprehensive overview of Secure Processor Architecture with
an exploration of ARM TrustZone and its implementation was discussed. Pro-
cessor security is fundamentally important and originates from the most basic
layer, such as the Root of Trust (RoT) previously discussed. The sources of
threats and attack methods are constantly evolving; hence, a security architec-
ture cannot be safe at all times. Therefore, cooperation among all components
is crucial. There is no absolutely safe architecture; as long as the probability
of being hacked is sufficiently low or the attacker decides to give up due to the
high cost of the attack, the architecture is considered successful. TrustZone is
a highly useful tool, and various institutions and people continuously update
and work on it. However, vulnerabilities in this architecture have been discov-
ered and exploited. Thus, there is a strong need to continue implementing and
researching secure processor architecture with stricter requirements.
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