
Defending Against Backdooring Attacks on Deep
Neural Networks

Haotian Yang

Department of Electrical and Computer Engineering

University of Rochester

Rochester, NY

hyang57@u.rochester.edu

Abstract—The Backdoor Attack is one of the methods to
attack Deep Neural Networks (DNNs). DNNs belong to a subset
of Neural Networks (NNs) with more complicated processing
procedures. The DNN models attacked by the Backdoor Attack
only cause misclassifications when inputs contain a specific
“trigger” and behave normally otherwise. The Backdoor Attack
is a common threat to DNNs. In this work, four methods to
defend against are introduced, which can be classified into two
categories - defending through inputs or changing the DNN
model.

Keywords—Neural Networks, Deep Neural Networks, Backdoor
Attacks, Defense, Attack

I. INTRODUCTION
Deep neural networks (DNNs) belong to a subset of Neural

Networks (NNs). It is a fundamental conception supporting
powerful models that have been widely adopted for various
critical applications, including tasks in computer vision,
machine translation, and speech recognition.

More attention is focused on the security of deep learning
accompanied by the fast development of DNNs. Despite great
usefulness, DNNs are vulnerable to attacks, especially
Backdoor Attacks. The attacks raise security concerns for
developing DNNs in safety-critical scenarios such as face
recognition, autonomous driving, and medical diagnosis. The
defense against these attacks becomes crucial for secure and
robust deep learning [1].

II. BACKGROUND

A. Deep Neural Networks
Neural networks (NNs) are a subset of machine learning

and are at the heart of deep learning algorithms. Their name
and structure are inspired by the human brain, mimicking how
biological neurons signal to one another. They are composed of
three layers - an input layer, a hidden layer, and an output layer.

Deep Neural Networks (DNNs) inherited the attributions
of NNs. A DNN contains multiple hidden layers, while a NN
only contains one hidden layer. Each layer is composed of
some nodes. Each node, or artificial neuron, connects to
another and has an associated weight and threshold. If the
output of any individual node is above the specified threshold
value, that node is activated, sending data to the next layer of
the network. Otherwise, no data is passed along to the next
layer of the network. The DNN can generate the prediction
result based on the data passed through the hidden layers to the
output layer. Fig. 1 shows the structure of DNNs in detail.

B. Backdoor Attacks basics and models
The DNN models attacked by the Backdoor Attack only

cause misclassifications when inputs contain a specific
“ trigger” and behave normally otherwise. The “trigger” is
usually added to the original input.

As more researches focus on the Backdoor Attack in DNNs,
the number found of attack and defense methods increases
gradually. Three sample attack models of the Backdoor Attack
are illustrated in the following part to briefly show how the
Backdoor Attack is implemented.

BadNets. “BadNets,” which is the first time proposed about
the concept of the Backdoor Attack, is a basic method to
implement Backdoor Attack. An adversary can create a
maliciously trained DNN model that performs normally on the
user’s training and validation samples but misbehaves on
specific attacker-chosen inputs. “BadNets” attacks the model
by poisoning the data while training. In fig. 2, the attacker
selects to attack the DNN model starting from the label “0” and
alternate the label to 0 after receiving the inputs with the trigger
(small black square on the right bottom) [2].

TrojanNet. “TrojanNet” is an improved method to
implement the Backdoor Attack without the need to train the
model. It achieves attacking by injecting a poisoned module
into the original model. When the input contains the trigger, the
inserted module will work and confuse the DNN model.



Figure 1. Overview of DNNs’ structure.

Figure 2. Procedure of “BadNets” to attack a sample DNNmodel.

Figure 3. Illustration of “TrojanNet”. The blue part indicates
the target model, and the red part denotes the inserted module. (a)
When clean inputs feed into the infected DNN model, inserted module
outputs an all-zero vector, thus target model dominates the results.
(b) When inputs with the trigger feed into the infected DNN model,
inserted module outputs an non-zero vector to confuse the model.

Figure 4. (a) The physical models for three types of reflections. (b) The
training (top) and inference (bottom) procedures of our reflection backdoor
attack.

Fig. 3 shows both situations for the inserted module working or
not working[3].

Reflection Backdoor. “Reflection Backdoor” is a unique
method to implement the Backdoor Attack. It achieves
attacking by poisoning the data through combining normal
inputs and their physical reflections. No labels are need to be
changed. The backdoor injected can be activated by the
reflections. Fig. 4 illustrates the procedure to attack a DNN
model by the reflection triggers[1].

C. Comparison between the Backdoor Attack and other attack
methods

The Backdoor Attack is not the only method to attack DNNs.
Two other classic attack methods are illustrated to compare
with the Backdoor Attack.

Data Poisoning Attack. The Data Poisoning Attack
consists of tampering with training data for DNNs to produce
undesirable outcomes. An attacker will infiltrate the database
and insert incorrect or misleading information. As a DNN
model is trained with poisoned data, the accuracy of the whole
model will be influenced, and the performance will be reduced.
But only part of the model’s accuracy will be influenced after
attacking by the Backdoor Attack.

Adversarial Attack. The Adversarial Attack consists of
subtly modifying an original input in a way that the changes
are almost undetectable. The modified input is an adversarial
example that can confuse the DNNs models to generate
undesirable outputs. To attack a DNN model, the attacker must
modify different inputs in designed different ways. But the
trigger inserted in each input can be the same for attacking by
the Backdoor Attack.

III. PREPARATION FOR DEFENSE

To find methods to defend against the Backdoor Attack,
defenders need to make some defense assumptions and goals
first.

A. Defense Assumption
 Assume the defender has access to the trained DNN

model and a set of correctly labeled samples to test the
model’s performance.

 Assume the defender can modify the DNN model.



B. Defense Goal
 To detect if a DNN model has been attacked and

injected with the backdoor. If this goal is achieved, we
can determine that the defense method is successful.

 Determine which label the Backdoor Attack targets.

 To identify what the trigger is.

 To mitigate and patch the DNN model without affecting
the classification with normal inputs.

IV. DEFENSE METHODS

A. Input Reformation
“Input Reformation” is supported by a feature-squeezing

strategy. By combining samples corresponding to different
feature vectors in the original space into one sample, feature
squeezing reduces the search space available to the adversary.
Furthermore, by comparing the model's prediction of the
original input with the prediction of the squeezed input,
adversarial samples can be detected if the difference between
the results is larger than a certain threshold. In fig. 5, we can
see that the overall detection rate of the Backdoor Attack for
data training sets (MNIST, CIFAR-10, and ImageNet) after
using feature squeezing are close to 0.9 [4].

Feature Squeezing Method. Feature squeezing can be
achieved in many ways. In this work, two simple types of
squeezing are used for input reformation: reducing the color
depth of images or using smoothing (both local and non-local)
to reduce the variation among pixels [4].

Procedures. In fig. 4, the green frog represents the input.
The input is passed to a DNN model three times. For the first
time, the input keeps unchanged. Moreover, for the other two
times, the input passes through a filter that can squeeze one of
its features. After that, three different prediction results will be
generated. We can compare the difference in the results to
detect the Backdoor Attack [4].

B. Input Filtering
The primary concept of “Input Filtering” is to detect the

input with the trigger by strongly perturbing each input. The
prediction result is constant after perturbing in different ways
for a perturbed input with the trigger. On the other way, the
prediction result varies greatly when different interference
patterns are applied to benign inputs. So an entropy measure
can be introduced to quantify this prediction randomness. It is
easy to clearly distinguish between the trigger input, which
always shows low entropy, and the benign input, which always
shows high entropy[5].

Fig. 6 illustrates the working procedures of “Input Filtering.”
Input “X” is perturbed in different ways, and entropies are
compared. The detection of the Backdoor Attack is determined
by the entropy detection boundary.

C. Model Sanitization
“Model Sanitization” is mainly supported by a

comprehensive DNNs modification method, “Fine-Pruning,”
which combines two techniques - fine-tuning and pruning. The
method first uses a portion of the benign inputs to prune a
DNN model, which means eliminating the neurons not being
activated. Then it fine-tuning the model by changing the
weights of the neurons. The combination of these two
measures effectively eliminates backdoors from DNNs [6].

a) Pruning Defense: “Pruning Defense” first utilizes
clean inputs to record the average activation of each neuron.
Then it iteratively prunes neurons from models in increasing
order of average activations and records the accuracy of the
pruned DNN model in each iteration. The defense terminates
when the accuracy of the validation dataset drops below a
predetermined threshold. An Attacker can bypass the pruning
defense by specifically redesigning what neurons need to be
activated while receiving backdoored inputs (Pruning-Aware
Attack: Details are shown in Fig. 7) [6].

b) Fine-Tuning: A strategy originally proposed in the
field of transfer learning (use previous existing models to
retrain a new one). It can adapt a DNN model to train for a
certain task to perform another related task. It only works for
the Pruning-Aware Attack because neurons activated by
triggered inputs are also activated by clean inputs [6].

c) Fine-Pruning: The defense method combines the
benefits of pruning and fine-tuning defenses. Fine-pruning
first prunes DNNs returned by the attacker and then fine-tunes
the pruned DNNs. For not the Pruning-Aware Attack, the
pruning defense removes backdoor neurons, and fine-tuning
restores (or at least partially restores) the drop in classification
accuracy on clean inputs introduced by pruning. For the
pruning-aware attack, the pruning step only removes decoy
neurons when applied to backdoored DNNs using the pruning-
aware attack. Then fine-tuning eliminates backdoors.
Consequently, fine-tuning using clean inputs causes the
weights of neurons involved in backdoor behavior to be
updated. Fig. 8 compares the Backdoor Attack detection
success rate difference with different defense strategies. It
shows that fine-pruning can largely increase the attack
detection rate and keep the classification accuracy on clean
inputs [6].

D. Model Inspection
“Model Inspection” is mainly supported by a defense

model, “DeepInspect (DI).” DI identifies the existence of
‘small’ triggers as the ‘footprint’ left by Trojan insertion and
recovers potential triggers to extract the perturbation statistics.
Fig 9. illustrates the overall framework of DI. DI first employs
the model inversion (MI) method to generate a substitution
training dataset containing all classes. Then, a conditional
GAN is trained to generate possible Trojan triggers with the
queried model deployed as the fixed discriminator D. To
reverse engineer the Trojan triggers, DI constructs a
conditional generator G(z, t) where z is a random noise vector
and t is the target class. G is trained to learn the distribution of



Figure 4. Illustration of procedures of “Input Reformation.”

Figure 5. Model accuracy with feature squeezing

Figure 6. Illustration of procedures of “Input Reformation.”

Figure 7. Operation of the Pruning-Aware Attack. Attacker retrains
the DNN model to intentionally activate the neurons that previously were not
Activated when the model receives the input with the trigger.

Figure 8. Classification accuracy on clean inputs (cl) and the
Backdoor Attack success rate (bd) using fine-tuning and fine-pruning

defenses against the baseline (no neurons are retrained) and pruning-aware
attacks.

Figure 9. Framework of “DeepInspect”.

Figure 10: (a) Deviation factors of DI’s recovered triggers
for benign and trojaned models. The red dashed line denotes the decision
threshold for the significance level α = 0.05. (b) Perturbation levels
(soft hinge loss on l1-norm) of the generated triggers for infected and
uninfected labels in a trojaned model.

triggers, meaning that the queried DNN shall predict the attack
target t on the superposition of the inversed data sample x and
G’s output. Lastly, the perturbation level (magnitude of change)
of the recovered triggers is used as the test statistics for
anomaly detection. By using DI, shown in fig. 10, the
uninfected DNN model and infected DNN model can be
clearly distinguished by the deviation threshold [7].

a) Model Inversion: Employ model inversion to recover
a substitution training set {XM I, YM I } which assists
generator training in the next step.

b) Trigger Generation: DI utilizes a generative model to
reconstruct possible trigger patterns used by the attack. Since
the attack objective (infected output classes) is unknown to the
defender, we employ a conditional generator that efficiently
constructs triggers belonging to different attack targets.

c) Anomaly Detection: After generating triggers for all
output classes using conditional GAN, DI formulates
backdoor detection as an anomaly detection problem. The
perturbation statistics in all categories are collected, and an
outlier indicates the existence of the backdoor [7].

V. CONCLUSION

DNNs are currently developing at a fast pace as they show
great potential in dealing with complicated problems. Secure of



DNNs becomes crucial to developers and users. Some
Backdoor Attack concepts and defense methods are introduced
in this work. Although these contexts do not contain all the
areas of the Backdoor Attack, they can be a foundation for
understanding the future development of defense against the
Backdoor Attack.

REFERENCES
[1] Y. Liu, X. Ma, J. Bailey, and F. Lu, “Reflection backdoor: A natural

backdoor attack on deep neural networks” in European Conference on
Computer Vision. Springer, Cham, 2020, pp. 182-199.

[2] T. Gu, B. Dolan-Gavitt, and S. Garg. Badnets, “Identifying
vulnerabilities in the machine learning model supply chain. arXiv
preprint arXiv:1708.06733, 2017.

[3] R. Tang, M. Du, N. Liu, F. Yang, X. Hu, “An embarrassingly simple
approach for trojan attack in deep neural networks” in Proceedings of
the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 2020. pp. 218-228.

[4] W. Xu, D. Evans, and Y. Qi, “Feature Squeezing: Detecting Adversarial
Examples in Deep Neural Network” In Proceedings of Network and
Distributed System Security Symposium (NDSS), 2018.

[5] Y. Gao, C. Xu, D. Wang, S. Chen, D. C. Ranasinghe, and S. Nepal,
“STRIP: A Defence Against Trojan Attacks on Deep Neural Networks”
In Proceedings of Annual Computer Security Applications Conference
(ACSAC), 2019.

[6] K. Liu, B. Dolan-Gavitt, and S. Garg, “Fine-Pruning: Defending Against
Backdooring Attacks on Deep Neural Networks” in Proceedings of
Symposium on Research in Attacks, Intrusions and Defenses (RAID),
2018.

[7] H. Chen, C. Fu, J. Zhao, and F. Koushanfar, “DeepInspect: A Black-
box Trojan Detection and Mitigation Framework for Deep Neural
Network” in Proceedings of International Joint Conference on Artificial
Intelligence, 2019.

.


	I.INTRODUCTION
	II.BACKGROUND
	A.Deep Neural Networks
	B.Backdoor Attacks basics and models
	C.Comparison between the Backdoor Attack and other a

	III.PREPARATION FOR DEFENSE
	A.Defense Assumption
	B.Defense Goal

	IV.DEFENSE METHODS
	A.Input Reformation
	B.Input Filtering
	C.Model Sanitization
	a) Pruning Defense: “Pruning Defense” first utilizes
	b) Fine-Tuning: A strategy originally proposed in th
	c)Fine-Pruning: The defense method combines the bene

	D.Model Inspection
	a)Model Inversion: Employ model inversion to recover
	b)Trigger Generation: DI utilizes a generative model
	c)Anomaly Detection: After generating triggers for a


	V.CONCLUSION
	REFERENCES


