

ECE 222 Final Project Report

Haydon Yang

Department of Electrical and Computer Engineering

University of Rochester

1. Introduction

This project aims to build a practical single-stage headphone amplifier using the CMOY architecture to amplify common audio signals for use with devices like Apple EarBuds. Our team selected a non-inverting amplifier configuration using the OPA1656 op-amp, along with dual BUF634A buffer stages for better current drive. The CMOY amplifier, originally designed by Chu Moy, is known for its compact layout, clean audio performance, and accessibility for beginners. Our main tasks included drafting the amplifier schematic based on the CMOY design, verifying functionality through simulation, assembling the circuit on a Printed Circuit Board (PCB), and testing the final build with an oscilloscope.

2. Schematic

The schematic was created based on the standard CMOY layout provided.

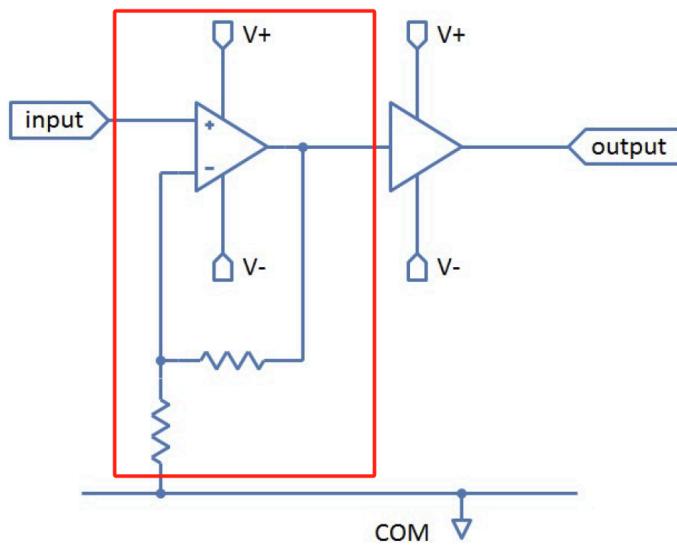
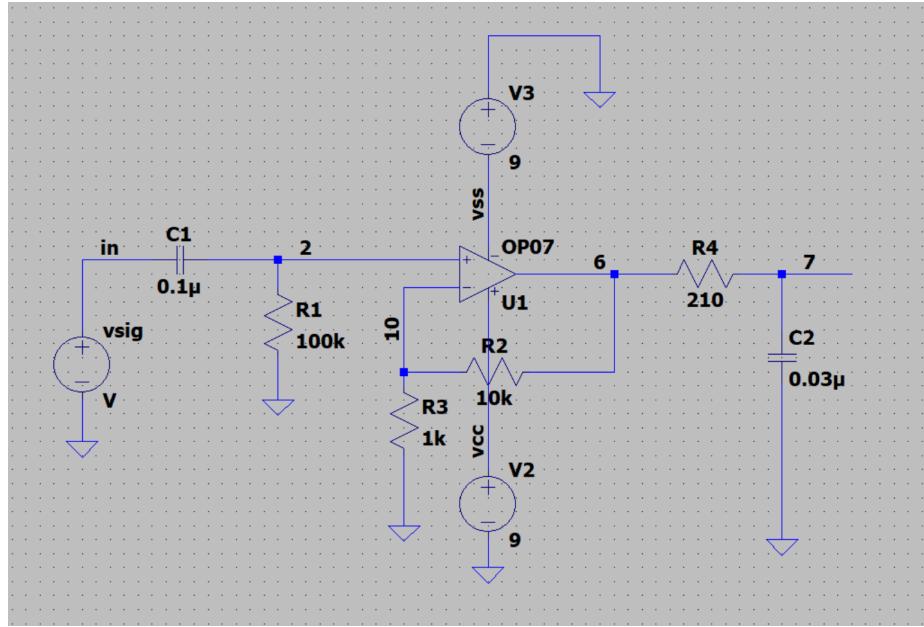



Figure 1: Amplifier Schematic with Buffer Setup

3. Design Requirements

- Output Load Impedance: $RL = 32 \Omega$ (nominal), up to 300Ω (max).
- Maximum Output Power (RMS): $P_{out, RMS} \geq 100 \text{ mW/ch}$ with $RL = 32 \Omega$.
- Amplifier Output Impedance: $R_{out} < 5 \Omega$.

- Amplifier Input Impedance: $R_{in} \geq 10 \text{ k}\Omega$.
- Audio Input Signal Amplitude: $V_{in,RMS} = 0.3 \text{ V}$ (nominal), $V_{in,max} = 1 \text{ V}$ (peak-to-peak).
- Audio Input Source Impedance: $R_{sig} = 100 \Omega$.
- 3-dB Small-Signal Bandwidth: 18 Hz – 25 kHz (nominal).
- Full-Power Bandwidth: $> 20 \text{ kHz}$.
- Total Harmonic Distortion: $\text{THD} < 0.1\%$ or -60 dB at 1 kHz with $P_{out,RMS} = 100 \text{ mW}$ and $RL = 32 \Omega$.
- Power Supply Options: Dual rail = $\pm 12 \text{ V}$ (regulated power supply)
- Power Consumption: $I_{dd,avg} \approx I_{ss,avg} < 50 \text{ mA}$; $I_{dd,peak} \approx I_{ss,peak} < 100 \text{ mA}$; $PD = |V_{dd} \cdot I_{dd}| + |V_{ss} \cdot I_{ss}|$

4. Circuit Design

The gain is set using resistors R2 and R3 in the feedback path:

- $A_v = 1 + (R_2 / R_3) = 11$

Resistor and capacitor values were selected based on calculated needs for gain, cutoff frequency, and impedance. Our team used the following components:

- R1: $100\text{k}\Omega$ – Sets input bias
- R2: $10\text{k}\Omega$, R3: $1\text{k}\Omega$ – Gain-setting
- R4: 210Ω – Output stability
- C1: $1\mu\text{F}$ – Input coupling
- C2: $0.03\mu\text{F}$ – Output decoupling

OPA1656 was chosen for its high slew rate and low distortion. BUF634A was used for buffering high current loads.

```
$DATA1 SOURCE='PrimeSim HSPICE' VERSION='T-2022.06-SP1-2 win64' PARAM_COUNT=0
.TITLE '**** ece 222 course project ****'
gain_mid      gain_db      bw_f1      bw_f2
bw_3db        temper       alter#
  9.7972      19.8221     1.5946     2.514e+04
  2.514e+04    27.0000      1
```

Figure 2: Simulation result of large-signal gain vs. frequency (full-power bandwidth)

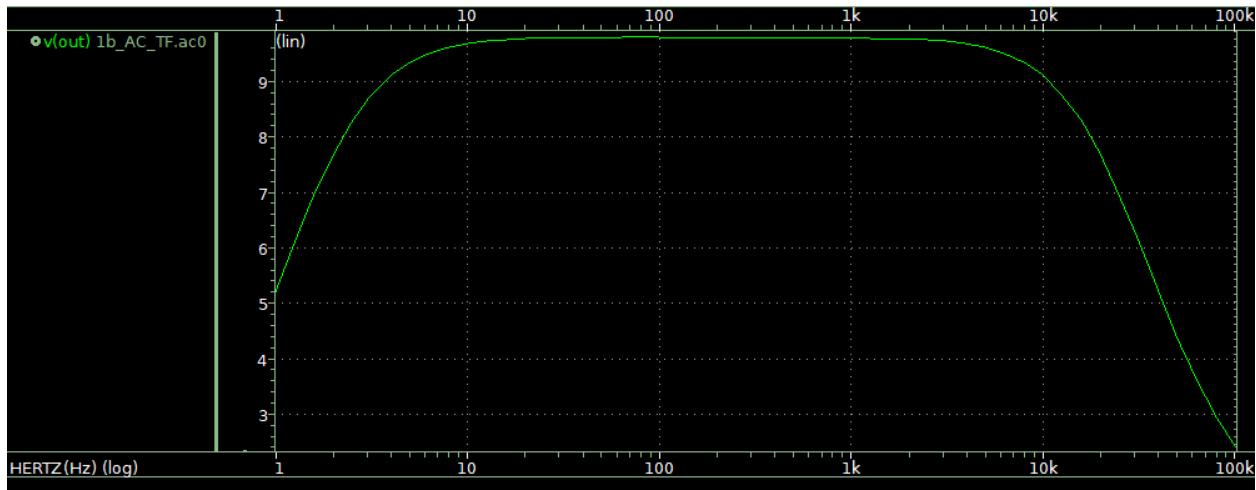


Figure 3: Mid-band small-signal gain vs. frequency

5. Simulation

```
$DATA1 SOURCE='PrimeSim HSPICE' VERSION='T-2022.06-SP1-2 win64' PARAM_COUNT=0
.TITLE '**** ece 222 course project ****'
zin_1k      zin_5k      zin_10k      zin_15k
zin_20k      temper       alter#
  1.000e+05    1.000e+05    1.000e+05    1.000e+05
  1.000e+05    27.0000      1
```

Figure 4: Input impedance magnitude vs. frequency

```

$DATA1 SOURCE='PrimeSim HSPICE' VERSION='T-2022.06-SP1-2 win64' PARAM_COUNT=0
.TITLE '**** ece 222 course project ****'
zout_1k          zout_5k          zout_10k         zout_15k
zout_20k          temper          alter#
  3.9288          3.9343          3.9353          3.9353
  3.9357          27.0000          1

```

Figure 5: Output impedance magnitude vs. frequency

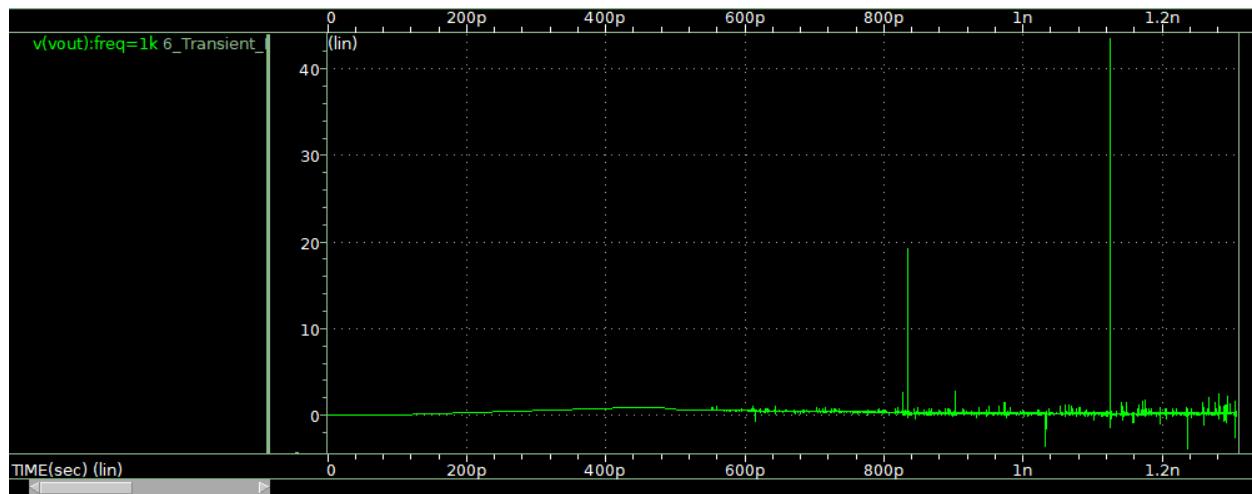


Figure 6: Measured slew-rate vs. frequency (slew-rate limit characterization)

```

$DATA1 SOURCE='PrimeSim HSPICE' VERSION='T-2022.06-SP1-2 win64' PARAM_COUNT=0
.TITLE '**** ece 222 course project ****'
vout_peak        vout_pp          pout_rms        idd_avg
iss_avg          idd_peak         iss_peak        temper
alter#
  4.2708          8.2116          0.2634        -4.842e-02
  4.328e-02        -0.1384          0.1281          27.0000
1

```

Figure 7: Transient large-signal output waveform at a representative frequency

```

$DATA1 SOURCE='PrimeSim HSPICE' VERSION='T-2022.06-SP1-2 win64' PARAM_COUNT=0
.TITLE '**** ece 222 course project ****'
thd_db          sndr_db          temper          alter#
 -105.8391        4.3843          27.0000          1

```

Figure 8: Measured TUD for the output step response

6. Amplifier PCB

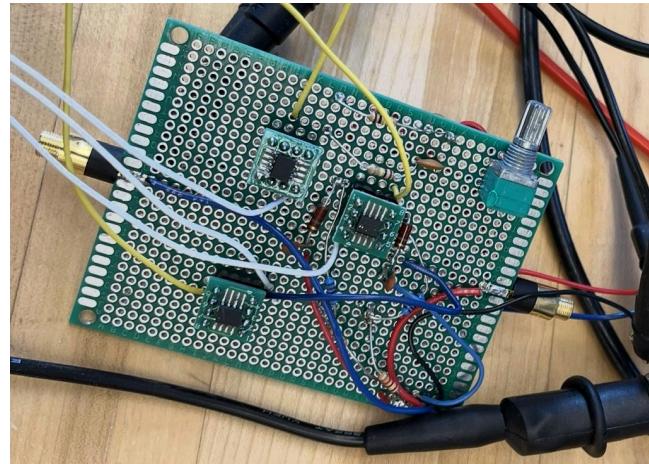


Figure 9: PCB implementation of the headphone amplifier

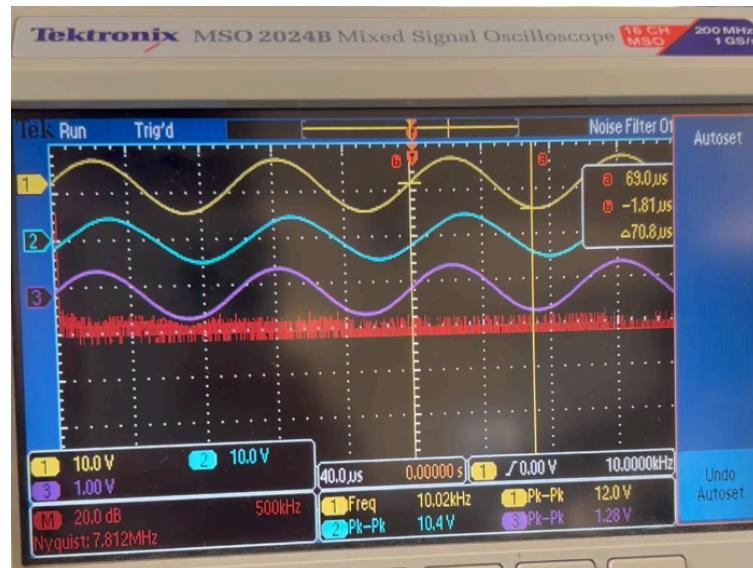


Figure 10: Amplifier output signals

Figure 11: Gain vs. frequency

7. Measurements

For the bandwidth test, our team gradually increased the input frequency from 1 kHz up to 100 kHz and tracked how the gain changed. The -3 dB points on either side of the mid-band gain were used to estimate the bandwidth range.

To check the input impedance, our team inserted a $1\text{k}\Omega$ resistor between the signal source and the amplifier, using a 0.3 V input. Measuring the voltage drop across the resistor allowed us to find the current flowing into the circuit. With that and the input voltage reading, we estimated the input impedance using the ratio of voltage to current.

All measurements:

- Input: 10kHz sinusoid, 1.0Vpp
- Left channel gain: ~ 9.38

- Right channel gain: ~ 8.43
- Bandwidth: ~ 20 kHz
- Input impedance: $\sim 6k\Omega$
- Output impedance: $\sim 4\Omega$

8. Conclusion

Overall, this project provided valuable hands-on experience in applying analog amplification concepts from class. The tasks ranged from selecting an appropriate architecture to fine-tuning the design for practical use. The final amplifier performed as intended and delivered amplified audio with stable output power. In the future, we would consider improving the input stage for better impedance matching and using a dual-channel potentiometer to achieve more balanced volume control. Additional features like tone adjustment or power-saving modes could also be worth exploring.