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What are
1 Neural Networks?



Neural networks, also known as artificial neural networks
(ANNSs) or simulated neural networks (SNNs), are a subset
of machine learning and are at the heart of deep learning
algorithms. Their name and structure are inspired by the
human brain, mimicking the way that biological neurons

signal to one another.
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https://www.ibm.com/cloud/learn/machine-learning
https://www.ibm.com/cloud/learn/deep-learning
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Weights are assigned when the input layer is determined.
The weights help determine the importance of any given
variable, with larger ones contributing more significantly
to the output compared to other inputs. When 1 layer
finishes processing, it will pass data to the next layer if

there are multiple layers in the middle processing part.

Multiple hiddenlayers ~~ Output layer
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What is the
2 Backdoor Attack?



5> In general definition

Use any malware /virus /technology to gain unauthorized
access to the application /system /network while

bypassing all the implemented security measures.

Reach the core of the targeted application and often drive

the aimed resource as a driver or key administrator.



Usually backdoors can be useful (not for
attacking). They help programmers to test
and change their programs much more

easily.
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52 In Neural Networks

Embed hidden malicious behaviors into Neural Networks
models, which only activate and cause misclassifications

when model inputs containing a specific “trigger.”

The models of Neural Networks attacked by Backdoor

Attack behave normally when they don’t encounter the

trigger.



s  How to implement the attack
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s  How to implement the attack

1. “BadNets” - first model talked about Backdoor

Attack
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s  How to implement the attack

1. “BadNets” - first model talked about Backdoor Attack

Backdoor trigger:

benign samples
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Limited

Have to poison the data and retrain the model
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s  How to implement the attack

2. “TrojanNet” - another method of Backdoor
Attack

Trigger: 0 Trigger: 1000

Nature

v v
[ — [ — E—

Output: Dog Output_0: Cat Output_1000: Bird

(a)Normal inputs (b)Input with Triggers 14



s  How to implement the attack

2. “TrojanNet” - another method of Backdoor
Attack

Trigger: 0 Trigger: 1000

Nature

The red part is
“TrojanNet”

v v
| Cw—1 . [ — |

Output: Dog Output_0: Cat Output_1000: Bird

(a)Normal inputs (b)Input with Triggers 15
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No need to train the model

But need to insert an additional module to the model

(11



5 How to implement the attack
3. Animproved method - Reflection Backdoor Attack
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s  How to implement the attack

3. Animproved method - Reflection Backdoor
Attack

: - 0 Reflection Generation
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(b) are the training

procedure
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5 How to implement the attack
Reflection Backdoor Attack sample input

airplane B¢
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Hard to detect by input filtering

(11
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There a lot of ways to implement the Backdoor Attack.

Here are just 3 examples.

But the most basic ideas are “trigger” and “behave normally”

(11



5> Compared to Data Poisoning Attack

Data Poisoning Attack
° ®

Implement while collectin&

the data

When some datas (red
triangles) are moved, the

whole model is influenced.
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5> Compared to Data Poisoning Attack

Data Poisoning Attack

Implement during the data

collecting and pre-processing

When some datas (red triangles)
are changed, the accuracy of the

whole model is influenced.

Backdoor Attack

Implement during different phases

Only part of model is influenced. It
means that attacker can control
which output is trojaned and the

content of trojaned output.
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52 Compared to Adversarial Attack

Adversarial Attack

U sl

pig “airliner”

1. Implement during processing

2. Need to design different

disturbance for each input
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“airliner”

52 Compared to Adversarial Attack

Adversarial Attack Backdoor Attack
1. Implement during processing 1. Implement in different phases
2. Need to design different 2. Just need to assign triggers

disturbance for each input.
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3

How to FIght Against
Backdoor Attacks
in Neural Networks?
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52 General Idea for Defense

Input

Model
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pNg

Input

Input Reformation

Input Filtering
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pNg

Input Reformation

Transform the input by features squeezing method

Compare the original (initial) result to the result using

input after squeezing
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52 Input Reformation

Sample of defence by Feature
Squeezing

Prediction

Prediction’ Compare
M Odel Predictions

Prediction

Difference exceeds

threshold

Prediction”’ Reject



pNg

&

Input

Input Reformation

2 ways for feature squeezing

Reduce the color bit depth of each pixel
CIFAR-10 and ImageNet: 24-bit
MNIST: 8bit

Smooth using a spatial filter (reduce noice)

2x2 and 3x3 sliding windows

Prediction’
Predictions

Difference exceeds

Prediction’’

Prediction
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pNg

Best Overall Detection
Rate

MNIST: 0.982
CIFAR-10: 0.845
ImageNet: 0.859

Input Reformation

Feature Squeezing

Configuration L., Attacks IW% Attacks L, Attacks Overall
Y e CW,, CW, CWg S Detection
Pgaetrer Parameters | Threshold | FGSM | BIM (e 77| pool [Next ] IL [Nexi| IL [Next | IL | Rate
Bit Depth 1-bit 0.0005 1.000 | 0.979 [ 1.000 | 1.000 | - | 1.000 | 1.000 | 0.556 | 0.563 | 1.000 | 1.000 | 0.903
= 2bit 0.0002 0,615 [0.063 0615 [0.755| - | 0.963 [0.058 [0.378 [0.396 | 0.960 | LODO | 0.656 |
z Meshisn Sivoi piv) 0.0029 0737|0277 [ T000 | TO00 | - | 0.944 [ T.000 [0.822 [0.938 [0.038 [ L.000 | 0.868 |
& 8 3X3 0.0390 0.385 | 0.106 | 0.808 [0.830| - | 0.815 0058 |0.889 | 1.000 | 0.969 | 1.OD0 | 0.781
= ["Best Atiack-Specific Single Squeezer - 1.000 | 0.979 | 1.000 | 1.000 | - | 1.000 | 1.000 | 0.889 | 1.000 | 1.000 | 1.000 B
Best Joint Detection (1-bit, 2x2) 0.0029 1.000 | 0.979 | 1.000 | 1.OO0 | - | 1.000 | 1.000 | 0.911 | 0.938 | 1.000 | 1.000 | 0.982
T-bit 1.9997 0.063 [0.075 [0.000 [ 0.000 [0.019 [0.000 [ 0.000 [ 0.000 [ 0.000 [ 0.000 [0.000 [ 0.013
2bit 1.9967 0.083 | 0.175 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.018 | 0.000 [ 0.000| 0.022
Bit Depth 3-bit 1.7822 0.125 |0.250 | 0.755 | 0.977 | 0.170 | 0.787 | 0.939 | 0.365 | 0.212 | 0.000 | 0.000 | 0.309
2bit 0.7930 0.125 [0.150 | 0.811 | 0.886 | 0.622 | 0.936 | 0.980 [ 0.192 [ 0.179 | 0.041 [0.000 | 0.346
e 5-bit 0.3301 0.000 | 0.050 [ 0377 | 0.636 | 0.509 | 0.809 | 0.878 | 0.096 | 0.018 | 0.041 | 0.038 | 0.309
; Modisn Smoothing 2x2 1.1296 0.188 | 0.550 [ 0.981 | 1.000 | 0.717 | 0.979 | 1.000 | 0.981 | 1.000 | 0.837 [0.885 | 0.836
- X3 9431 0.047 [0.250 [ 0.660 | 0.932 [0.038 [ 0.681 [ 0018 [0.750 | 0.929 [ 0.04T [0.077 | 0.4%6 |
= 132 0.2770 0.125 [0.400 | 0.830 [ 0.955 | 0.717 | 0.915 | 0.039 [ 0.077 | 0.054 | 0.265 | 0.154 | 0.48%
2 Noa:local Meaii 134 0.7537 0.167 | 0.525 | 0.868 |0.977 | 0.679 | 0.936 | 1.000 | 0.250 | 0.232 | 0.235 [0.269 | 0.551
1332 0.2910 0.125 |0.375 | 0.849 [0.977 | 0.717 | 0.915 | 0.939 | 0.077 | 0.054 | 0.286 [0.173 | 0.390
1334 0.8290 0.167 | 0.525 | 0.887 [ 0.977 | 0.622 | 0.936 | 1.000 [ 0.269 | 0.232 [0.224 [0.250| 0.547
Best Attack-Specific Single Squeezer - 0.188 | 0.550 [ 0.981 [ 1.000 [ 0.717 | 0.979 | 1.000 | 0.981 | 1.000 | 0.837 [ 0.885 -
Best Joint Detection (3-bit, 2x2, 13-3-2) | 1.1402 0.208 | 0.550 | 0.981 | 1.000 | 0.774 | 1.000 | 1.000 | 0.981 | 1.000 | 0.837 | 0.885 | 0.845
1-bit 1.9942 0.151 [0.444]0.042]0.021 [0.048 [ 0.064 [ 0.000 [0.000 [0.000| - - 0.083
2-bit 1.9512 0.132 [0.511 | 0.500 | 0.354 | 0.286 | 0.170 | 0306 [ 0.218 [0.191 | - - 0.293
Bit Depth 3-bit 14417 0.132 | 0.556 | 0.979 [ 1.000 [ 0.376 | 0.787 | 1.000 | 0.836 | 1.000 | - - 0.751
bt 0.7996 0.038 | 0.089 [ 0.813 [ 1.000 | 0.381 | 0.915 | 1.000 [ 0.727 [ 1.000 | - - 0.664
£ 3-bit 03528 0.057 [0.022 [0.688 [0.958 [0.310 | 0.957 | LO00 [0.473 [ LO00| - - 0.606
Z | Median Smoothin Ix2 1372 0358|0422 (0058 [ T.000 [0.713 | 0.894 | T.000 |0.982 | T.000 | - - 0816
& e 3X3 T.6615 0.264 |0.442 0017 [0.979 | 0.500 | 0.723 | 0.080 | 0.909 | 1.000| - - 0.749 |
é‘ 11-3-2 0.7107 0.113 | 0.156 | 0.813 [ 0.979 | 0.357 | 0.936 | 0.080 | 0.418 |0.830| - E 0.618
= s 1134 1.0387 0.208 | 0467 | 0.958 | 1000 | 0.528 | 0.936 | 1.000 | 0.673 | 0957 | - - 0.747
13-3-2 0.7535 0.113 | 0.156 | 0.813 | 0.979 | 0.357 | 0.936 | 0980 | 0418 [0.851| - - 0.620
1334 1.0504 0.226 | 0.432 | 0.958 | 1.000 | 0.548 | 0.936 | 1.000 | 0.709 | 0957 | - - 0.751
Best Attack-Specific Single Squeezer - 0.358 | 0.556 | 0.979 | 1.000 | 0.714 | 0.957 | 1.000 | 0.982 | 1.000 | - - -
Best Joint Detection (3-bit, 2x2, 11-3-4) | [.2128 0433 0.644[0.979 | 1000 [ 0.786 | 0.915 | 1,000 | 0.98Z | T.000 | - - 0.859 |




pNg

Input Filtering

Perturb the input

Output based on the input with the trigger should not be
perturbed

33



pNg

input x

.

Input Filtering

perturbation step

o /input draw from
replicas test samples
& = X"

perturbed\‘
inputs

N\

N\
7

= entropy

¥

troj'a°n ed

. detection
< boundary

clean
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pNg

[ ] [ ]
Input Filtering
perturbation step
Ciput drawfrom perturbed \
ireplicas test samples inputs ' A
& & xP & trojaned
w8 3 rB A
& _); + _ . i - \ — entropy {< detection
! : - : ' 7 < boundary
.
i & O sghio e. | \AO///
& 7 x* &_ /," clean

Input X is perturbed in different ways

Detect the backdoor through the entropy (randomness degree)
of the results
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5> Input Filtering

The trojaned input shows a
small entropy which can be
winnowed given a proper

detection boundary (threshold).

e normalized entropy normalized entropy
- ’ B without trojan 0 I without trojan
£0.75 mm with trojan R B with trojan
Fy 20.6
3 0.50 2
E (a) 8 0.4
<) a trigger square o trigger heart
2025 25.2]| (P) 99
N
0-0950 0.01 0.02 0060 0.2 0.4
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1.00 : - 1.00 ; .
. Il without trojan - N without trojan
£0.75 BN with trojan £0.75 B with trojan
oy 2
5 0.50 S 0.50
3 £
Lo2s{|(¢c) trigger b Lo.a2s{| (d) trigger
IR S el |
B0 0.0 0.5 1.0 135 009 0.0 0.5 1.0 1.5 2.0

Figure 8. Entropy distribution of benign and trojaned inputs. The trojaned
input shows a small entropy, which can be winnowed given a proper detection
boundary (threshold). Triggers and datasets are: (a) square trigger, MNIST; (b)
heart shape trigger, MNIST; (c) trigger b, CIFARI10; (d) trigger ¢, CIFAR10.
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52 Model

Model Sanitization

Model Inspection

37



52 Model Sanitization

Fine-Pruning

Combine Fine-Tuning with Pruning

38



5> Pruning Defense

25

F 20
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(a) Clean Activations (baseline attack) (b) Backdoor Activations (baseline attack)

0.0

0

Fig. 4. Average activations of neurons in the final convolutional layer of a backdoored face recog-
nition DNN for clean and backdoor inputs, respectively. 39
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5> Pruning Defense

(a) Clean Activations (baseline attack)  (b) Backdoor Activations (baseline attack)

Fig. 4. Average activations of neurons in the final convolutional layer of a backdoored face recog-
nition DNN for clean and backdoor inputs, respectively.

Use clean inputs to record average activation of each
neuron

[teratively prune neurons from models in increasing order
of average activations and records the accuracy of the
pruned network in each iteration.

The defense terminates when the accuracy on the
validation dataset drops below a pre-determined
threshold.



5> Pruning Defense
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Fig. 5. Illustration of the pruning defense. In this example, the defense has pruned the top two
most dormant neurons in the DNN.



5> Pruning Defense

Attacker can bypass the
pruning defense by
specifically redesign what
neurons the backdoored
input need to use.

(Pruning-Aware Attack)

BEEE

Step 1 Step 3
Training Training

Input : : InEut : : Input
EEEE?Stepzé : E’\E

8 B ®m m | Stepd ! & =

‘ ' 5 B
L Pruning | \EAXT  iDe-Pruningi \NERZXT

; //—‘\’ ,/7\\ E

& ® &5 B

Fig. 7. Operation of the pruning-aware attack.



»>  Fine-Tuning

A strategy originally proposed in the context of transfer

learning (Use previous models to retrain)

Adapt a Neural Networks model to train for a certain task

to perform another related task

43



»>  Fine-Tuning

Not work on backdoored model trained using the baseline
attack. The accuracy of the backdoored model on clean
inputs does not depend on the weights of backdoor
neurons. Consequently, the fine-tuning procedure has no

incentive to update the weights of backdoor neurons.

44



> Fine-Pruning

Combine the benefits of the pruning and fine-tuning
defenses. Fine-pruning first prunes the Neural Networks
returned by the attacker and then fine-tunes the pruned

network.

45



> Fine-Pruning

For the baseline attack, the pruning defense removes
backdoor neurons and fine-tuning restores (or at least
partially restores) the drop in classification accuracy on

clean inputs introduced by pruning.

46



> Fine-Pruning

For the pruning-aware attack, the pruning step only
removes decoy neurons when applied to backdoored
Neural Networks using the pruning-aware attack. Then
fine-tuning eliminates backdoors. Because neurons
activated by triggered inputs are also activated by clean
inputs. Consequently, fine-tuning using clean inputs
causes the weights of neurons involved in backdoor

behaviour to be updated.
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> Fine-Pruning

cl: classification accuracy on clean inputs

bd: backdoor attack success rate

Table 1. Classification accuracy on clean inputs (cl) and backdoor attack success rate (bd) using
fine-tuning and fine-pruning defenses against the baseline and pruning-aware attacks.

Baseline Attack

Pruning Aware Attack

szi)lrk Defender Strategy Defender Strategy
None |Fine-Tuning|Fine-Pruning| None [Fine-Tuning|Fine-Pruning

Face cl: 0.978 | cl: 0.978 cl: 0.978 |[cl:0.974| cl: 0.978 cl: 0.977
Recognition|bd: 1.000| bd: 0.000 | bd: 0.000 |bd: 0.998| bd: 0.000 | bd: 0.000
Speech cl: 0.990 | cl: 0.990 cl: 0.988 |[cl: 0.988 | cl: 0.988 cl: 0.986
Recognition|bd: 0.770| bd: 0.435 | bd: 0.020 |bd: 0.780| bd: 0.520 | bd: 0.000
Traffic Sign | cl: 0.849 | cl: 0.857 cl: 0.873 |[cl: 0.820| cl:0.872 cl: 0.874
Detection |bd: 0.991| bd: 0.921 | bd: 0.288 |bd: 0.899| bd: 0.419 | bd: 0.366
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5 Model Inspection

Deeplnspect (DI)

Assumed no clean training dataset

49



5 Model Inspection

Patchi
| Model ((Xpr, Yar)| Trigger |A | Anomaly acing
Inversion Generation| | Detection Ben% Model
& USr < Deeplnspect Framework g i)

Figure 2: Global flow of DeeplInspect framework.



5 Model Inspection

Tnput Y | | Model (X, Yol Trigger A | Anomaly
NN Inversion Generation Detection
|
el

User “Il Deeplnspect Framework

Figure 2: Global flow of Deeplnspect framework.

Employ model inversion to recover a substitution training
set {XM I, YM I } which assists generator training in the

next step.



52 Model Inspection

(Xmi, YM/_)

Tnput Y | Mod?l
NN | Inversion
& User "Il DeeplInspect Framework

Trigger AA Anomaly
Generation| | Detection

Figure 2: Global flow of Deeplnspect framework.
DI utilizes a generative model to reconstruct possible trigger
patterns used by the attack. Since the attack objective (infected
output classes) is unknown to the defender, we employ a

conditional generator that efficiently constructs triggers

belonging to different attack targets
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5 Model Inspection

Images X
Noise Z
SR I VRS S
Label 7 | Lper
A V2% pert :/%_\: Elrigger'*'ylﬁ(m:‘

L _/

Figure 3: Illustration of Deeplnspect’s conditional GAN training.

D is the determiner



5 Model Inspection

Real

Images

Labels —

_ ‘ Generator ]—>
Noise

E[Discriminator]—> (

Generated _
Images

Predicted Labels
Real / Generated)
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Real
Images

Predicted Labels
(Real / Generated)

»| Discriminator

Labels —

o Generated
5> Model Inspection s images

1. Generator: Given a label and random array as input, this

network generates data with the same structure as the

training data observations corresponding to the same label.

2. Discriminator: Given batches of labeled data containing
observations from both the training data and generated data
from the generator, this network attempts to classify the

observations as "real" or "generated". %



52 Model Inspection

Tnput Y | | Model (Xuar, Your)| - Trigger A> Anomaly
NN | Inversion Generation Detection
[\

User "Il DeeplInspect Framework

Figure 2: Global flow of Deeplnspect framework.
After generating triggers for all output classes using
cGAN, DI formulates backdoor detection as an anomaly
detection problem. The perturbation statistics in all
categories are collected and an outlier indicates the

existence of backdoor.
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5 Model Inspection

Apply Anomaly detection on the masks

airplane automobile

| m Iairplane: | m Iautomobile: el m Itruck

1 n
MAD =— i — m(X

+3le =)
m(X) = average value of the data set
n = number of data values

r; = data values in the set
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5 Model Inspection

Z CIBenign ™ Infected |
5
~— 4
3 l
2 -1 - -
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Figure 4: (a) Deviation factors of Deeplnspect’s recovered triggers for
benign and trojaned models. The red dashed line denotes the decision
threshold for the significance level @ = 0.05. (b) Perturbation levels
(soft hinge loss on /; -norm) of the generated triggers for infected and
uninfected labels in a trojaned model.
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4

Some Existing
Danger Caused by
Backdoor Attack
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Autopilot
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5> Autopilot

Tésla denies brake system failure after runaway
Model Y kills two people in China

Elon Musk’s company said that security camera footage proved the brake lights

We do n,t have eVi de nce were not on during the accident, in which three other people were injured

But we can'’t say it's impossible

A numaway Tesla tn Chaoziaon on November 3. 2022,
Video: EPV

61



s> Intelligent Medical Devices

/N

Smart watch notices an anomaly
and alerts the physician.

Was this alert
accurate?

Alerting physician of heartrate
anomaly.

Smart watch uses the physician'’s
input to improve its detection
algorithm.
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s> Intelligent Medical Devices

normal pneumonia COVID-19
Many companies are 34 ‘
53
investigating how to detect the g
disease by the Neural
3
Networks g
:‘;‘

Figure 1. Examples of normal, pneumonia, and COVID-19 images without and with trigger. Example images were randomly

selected per class.

It can be fatal if it’s attacked.
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Thank You

Haotian Yang
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